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Many insurance companies are struggling 
to overcome the computational challenges 
involved in computing the Solvency Capital 
Requirement (SCR) under the Solvency II 
(SII) regime. Standard market approaches 
such as Least Square Monte Carlo (LSMC) 
and Replicating Portfolios (RP) can be 
difficult to calibrate and validate in practice 
but also lead to deficient outcomes if not 
calibrated properly. In this paper, we show 
how the Multilevel Monte Carlo (MLMC) 
method is a relevant alternative to compute  
risk-based capital requirements as it does 
not rely on any proxy assumptions.  
The Solvency II directive is the prudential framework for 
insurers and reinsurers in Europe. The directive introduces 
the so-called Solvency Capital Requirement (SCR) to ensure 
that insurance companies are able to meet their financial 
claims. This framework introduces major innovation in the 
actuarial landscape such as market-consistent valuation of 
the balance sheet and risk-based capital requirements.  
To evaluate the SCR, the supervisory authority sets out  
two possible methodologies: 

1. A “Standard Formula” approach, based on stress  
tests on several risk modules (e.g., interest rate, 
equity, mortality), and then an elliptical aggregation  
to derive an overall SCR. 

2. An “Internal Model” approach that is based on  
a quantile of the one-year loss distribution of  
the insurer’s portfolio at a 99.5% confidence level. 

Our aim is to investigate numerical methods to compute the 
SCR using the internal model approach, which introduces 
major computational challenges. In a more general setting, 
the problem amounts to computing the probability of a large 
loss of a financial portfolio over a defined risk horizon 𝜏.  
This task is particularly challenging in practice as complex 
insurance portfolios do not admit closed form solutions (for 

example because of embedded options or specific accounting 
rules). Hence, the valuation requires heavy Monte Carlo 
simulations. More formally, these types of problems involving 
simulations within simulations can be framed in the so-called 
Nested Simulation setting where outer scenarios are used to 
project the portfolio risk factors up to the risk horizon under 
the real-world probability, then inner simulations are 
necessary to compute the portfolio value conditionally on 
each primary scenario. This brute force approach is too time-
consuming to be used in a real insurance business case.  

In this paper, we introduce the MLMC methods developed by 
Giles (2008)1 and their associated refinement strategies from 
Giles et al. (2019) .2 This method relies on a smart allocation 
of a given computational budget between inner and outer 
scenarios spread across different levels to obtain an optimal 
trade-off between variance reduction and bias correction. 
This methodology exhibits major advantages for insurance 
companies as it does not rely on any proxy, which makes the 
approach easier to justify and validate. Indeed, the validation 
process for MLMC is relatively close to that of a full nested 
simulation approach, which would require justifying the 
chosen approach and retained parameters of the simulation 
(e.g., the number of outer and inner scenarios retained in a 
full nested exercise). This justification can require performing 
sensitivities to main parameters and assessing whether the 
estimated percentile value is stable, or more precisely 
measuring the optimality of the bias-variance trade-off.  
The reduction in the validation burden therefore comes from 
the ”simulation” nature of the approach and the absence of 
any a priori assumption on the function that gives the 
response of Own Funds (OF) to risk factor outcomes. 
As such, there is no need to enter a process of proxy 
calibration, then validation and remediation, with any further 
calibration update if necessary, until a satisfactory replication 
is obtained. In addition, the MLMC algorithm can be efficiently 
parallelised and implemented in graphic cards (GPU) to 
further reduce the overall computational time. This makes  
the approach appealing under current and upcoming 
computational architectures leveraging capabilities from  
cloud services providers. 

 

 

 

1 Michael B Giles (2008). Multilevel Monte-Carlo path simulation. Operations 
research, 56(3):607–617 

2 Michael B. Giles & Abdul-Lateef Haji-Ali (2019). Multilevel nested simulation 
for efficient risk estimation. SIAM/ASA J. Uncertain. Quantif., 7(2):497–525. 
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This paper is organised as follows. Section 1 introduces the 
mathematical framework of the nested simulation approach 
and provides a precise definition of the quantile estimation 
problem, then Section 2 introduces the standard MLMC 
methods. Section 3 describes refinements that are relevant  
for SCR quantile estimation, while Section 4 illustrates the 
performance of the different algorithms on numerical 
experiments on a toy example. Finally, Section 5 shows 
applications to Internal Model SCR computation. 

1. Nested simulations 
The general problem is to estimate a risk measure of a 
financial portfolio over some future date 𝜏 called the risk 
horizon. We consider the general setting of Bauer et al. 
(2015).3 Let 𝑉! be the current value of the insurance portfolio. 
The value of the portfolio at time 𝜏 can be expressed as a 
conditional expectation of future discounted cash flows under 
an Absence-of-Arbitrage (AOA) opportunity.  

Let (Ω, ℱ, ℱ"#!, ℙ) be a complete filter probability space 
modelling all possible market states and ℙ the historical  
(real-world) probability measure. Let (𝑋")"#! = +𝑋"$, … , 𝑋"%-"#!  
a 𝑑-dimensional Markov process that models the underlying 
risk factors of the portfolio. The filtration ℱ" represents all 
market information available up to time 𝑡 and is generated  
by the underlying risk factors ℱ" = 𝜎(	(𝑋&)&'"). We also 
assume that a risk-neutral probability measure ℚ exists,  
under which discounted price processes are martingales. Let 
𝑍 ∈ ℝ be a one-dimensional random variable that represents 
the sum of future discounted cash flows generated by the 
portfolio. The (market) value of the portfolio at time 𝜏 is 
therefore given by:	

𝑉! = 𝔼ℚ[𝑍|ℱ!] 

The portfolio loss at time 𝜏	can be expressed as the change in 
the portfolio market value between 0 and 𝜏:  

𝐿! = 𝑉# − 𝑉! = 𝔼ℚ[𝑉# − 𝑍|ℱ!] 
To ensure that the company will remain solvent at time 𝜏, we 
can compute the smallest amount 𝑥 the company must hold 
today to have a small probability to make a large loss at the 
risk horizon (say less than 𝛼): 

𝑆𝐶𝑅 = inf{𝑥 ∈ ℝ,ℙ(𝐿! ≥ 𝑥) ≤ 𝛼},	 
where the specifications underlying the SCR is 𝜏 = 1 year and 
𝛼 = 0.5%; we note however that the proposed method is 
generic and can be applied to other specifications. 

Denoting by 𝐹(! 	the cumulative distribution function (cdf) of 𝐿), 
the SCR can be found as the root of the following equation: 

𝐹$!(𝑆𝐶𝑅) = 1 − 𝛼 

 

 

Hence the main problem is to estimate (both accurately and 
efficiently) the probability of a large loss: 

𝐼 = ℙ(𝐿! ≥ 𝑥) 
This estimation problem can finally be written as a nested 
expectation problem: 

𝐼 = 𝔼ℙ[𝑔(𝔼ℚ[𝑌|ℱ!])] 
where  

𝑔(𝑢) = 𝕀&'( and 𝑌 = 𝑉# − 𝑍 

1.1 NESTED MONTE CARLO ESTIMATOR 
The brute force estimation method is based on approximating 
the inner and outer expectation using independent Monte Carlo 
samples. The conditional inner expectation 𝔼ℚ[𝑌|ℱ)] is 
estimated for a given realisation of the underlying risk factors 
(𝑥!, … , 𝑥)) ∈ (ℝ%)) by a standard Monte Carlo estimator with 𝐾 
inner simulations:	

𝐸F) =
1
𝐾H𝑌*

)

*+,

 

where (𝑌$, … , 𝑌+) is an i.i.d sample of the conditional distribution 
of 𝑌 given that (𝑋!, … , 𝑋)) = (𝑥!, … , 𝑥)). The outer expectation 
is then approximated using the standard Monte Carlo 
estimator, using 𝐽 outer simulations of the risk factors 
+𝑋!

, , … , 𝑋)
,-,-$,…,0:	

𝐼I-,)	012314 =
1
𝐽H 𝑔K𝐸F5,)L

-

5+,
 

The procedure is illustrated in Figure 1. 

FIGURE 1:  NESTED MONTE CARLO METHOD 

 
 
 
 
 
 

…
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Trajectory 1

Trajectory i

Trajectory J

3 Daniel Bauer & Hongjun Ha (2015). A least-squares Monte Carlo approach to 
the calculation of capital requirements. In World Risk and Insurance 
Economics Congress, Munich, Germany, August, pages 2–6. 
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1.2 COMPLEXITY ANALYSIS 
Gordy et al. (2010)4 and Hong et al. (2009)5 analysed  
the best allocation strategies between inner and outer  
simulations to minimise the mean squared error (MSE)  
of the nested estimator for the indicator payoff 𝑔 = 𝕀&∈[4,56) 
and to determine the best asymptotic complexity that  
can be achieved by the nested estimator.  

For a given computational budget, the goal is to minimise  
the overall MSE of the estimator 𝐼L0,+	9:;":% using the bias- 
variance decomposition: 

𝑀𝑆𝐸K𝐼I-,)	012314L = 𝑏𝑖𝑎𝑠6K𝐼I-,)	012314L + 𝑉𝑎𝑟(𝐼I-,)	012314) 

where: 	
𝑏𝑖𝑎sK𝐼I-,)	012314L = 𝔼U𝐼I-,)	012314 − 𝐼V 

The number of inner simulations 𝐾 controls the level of bias,  
as typically increasing the number of inner simulations for a 
given Own Funds (OF) measurement based on risk-neutral 
simulations improved convergence to the true OF value.  
Also, the number of outer simulations 𝐽 controls the level of 
variance (statistical error), as indeed the higher the number  
of real-world simulations (and OF value under each real-world 
simulation), the more precise the percentile estimate. 

Based on asymptotic characterisation of the bias and variance, 
Broadie et al. (2011)6 show the existence of an asymptotic 
optimal allocation (𝐽⋆, 𝐾⋆) that minimises the MSE. In particular, 
in order to achieve a root mean squared error (RMSE) in 𝑂(𝜀), 
the optimal nested estimator requires 𝐽⋆ = 𝑂(𝜀=>) outer 
scenarios and 𝐾⋆ = 𝑂(𝜀=$) inner simulations, leading to an 
overall complexity in 𝑂(𝜀=?).  

As an order of magnitude, achieving a precision 𝜖 ∼ 10=? 
would require an optimal allocation of 𝜖=> ∼ 10@ outer real-
world simulations and 𝜖=$ ∼ 10? inner risk-neutral scenarios, 
leading to a total simulation budget of 𝜖=? ∼ 10A. The result 
above also shows that in general if we want to double the 
accuracy of the best possible nested estimator, we need 2? = 8 
times more simulations, which is either inefficient or out of 
reach in practice. 

 

 

 

 

 

 

 

2. The MLMC method 
2.1 OVERVIEW OF MLMC 
Multilevel Monte Carlo (MLMC) methods have been 
successfully applied to compute nested expectation  
and reduce the overall complexity of the crude nested  
Monte Carlo estimator.  

A MLMC method works as follows. Let 𝑃!, … , 𝑃( be a 
sequence of random variables approximating 𝑃 = 𝑔+𝔼ℚ[𝑌|ℱ)]- 
with increasing accuracy and consequently increasing 
computational cost. The most accurate estimator of 𝑃 is  
at the finer “level” denoted by 𝐿, leading to the approximation: 

𝔼[𝑃] ≈ 𝔼[𝑃$] 
The error that comes from replacing 𝑃 by 𝑃( is the bias.  
The parameter 𝐿 controls the depth of the bias correction. 

The key ingredient of the methodology is that instead of 
estimation 𝔼[𝑃(] directly, we can expand it into a telescopic 
sum involving estimators at different levels 𝑙 between 0 and 𝐿: 

𝔼[𝑃$] = 𝔼[𝑃#] +H𝔼[𝑃7 − 𝑃78,]
$

7+,

 

It is then possible to approximate each expectation using a 
standard Monte Carlo procedure to get the MLMC estimator: 

𝐼I9$9: =
1
𝐽#
H𝑃#

(<") +H
1
𝐽7
H 𝑃7

(<#) − 𝑃78,
(<#)

-#

<#

$

7+,

-"

<"+,

 

The important point regarding the equation above is the 
flexibility in the method to allow for the number of outer 
simulations 𝐽B to be different for different levels. The term  
at level 0 does most of the job in estimating 𝐼 and it is the main 
term that contributes to reduce the variance of the estimator. 
The terms 𝑃B − 𝑃B=$	then aim at correcting the bias introduced 
by replacing 𝑃 by 𝑃(. To get an intuitive feeling of how the 
allocation of resources 𝑙 ↦ 𝐽B must be spread across levels, 
note that one should use high 𝐽B for low levels 𝑙 because 𝑃B is 
cheap to compute at low levels. Then, if the sample 𝑃B − 𝑃B=$ 
can be made sufficiently negatively correlated, we are implicitly 
performing a variance reduction method, so we can safely 
decrease 𝐽B without impacting the accuracy of the estimates in 
the region where 𝑃B − 𝑃B=$ are costly. 

2.2 MLMC ESTIMATOR IN THE NESTED SIMULATION 
FRAMEWORK 
In this section, we derive the MLMC estimator for nested 
expectation. Let 𝐽 = (𝐽B)B-!,…,( (or 𝐾 = (𝐾B)B-!,…() be the 
sequence modelling the number of outer simulations (or inner 
simulations) at each level. Following the intuitive reasoning of 
the previous section, 𝑙 ↦ 𝐽B must be decreasing while 𝑙 ↦ 𝐾B is 
increasing. A common choice is to consider the geometric 
progression on each level:	

𝐽7 = 𝐽#287 , 𝐾7 = 𝐾#27 , 𝑙 = 0,… , 𝐿. 

4 Michael B. Gordy & Sandeep Juneja (2010). Nested simulation in portfolio risk 
measurement. Management Science, 56(10):1833–1848. 

5 L. Jeff Hong & Sandeep Juneja (2009). Estimating the mean of a non-linear 
function of conditional expectation. In Proceedings of the 2009 Winter 
Simulation Conference (WSC), pages 1223–1236. IEEE. 

6 Mark Broadie, Yiping Du, & Ciamac C. Moallemi (2011). Efficient risk 
estimation via nested sequential simulation. Management Science, 
57(6):1172– 1194. 
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This leads to the nested version of the MLMC estimator:	

𝐼I9$9: =
1
𝐽#
H𝑔K𝐸F<",)"L +H

1
𝐽7
H𝑔K𝐸F<#,)#L − 𝑔K𝐸F<#,)#$%L
-#

<#+,

$

7+,

-"

<"+,

 

We can observe that each level 𝑙 has computational cost—	
𝐽7 × 𝐾7 = 𝐽# × 𝐾#, 

—while at any level 𝑙 , the computation of 𝑔+𝐸H1",+"-	uses 𝐾B 

inner scenarios and, because	𝐾B=$ =
+"
>
, half of the sample is 

“thrown away” to compute 𝐸H1",+"#$. We can therefore “recycle” 
the second half sample to perform variance reduction.  
This observation leads to the so-called antithetic version of  
the MLMC estimator:	

𝐼#!"!# =
1
𝐽$
'𝑔)𝐸+%!,'!, +'

1
𝐽(
'.𝑔)𝐸+%",'", −

𝑔)𝐸+%",'"#$, + 𝑔)𝐸+%",'"#$
) ,

2
1

*"

%"+,

"

(+,

	
*!

%!+,

 

where 𝐸H1",+"#$
′ 	is the empirical mean over the second half of the 

sample at next level:	

𝐸F<#,)#$%
′ =

1
𝐾78,

H 𝑌<#,*

)#

*+>)#$%6 ?

 

Giles (2008) shows that a MLMC estimator of this type can 
reduce the computational cost from 𝑂(𝜀=?) to 𝑂(𝜀=>) 
depending on the regularity of the payoff function. 

Under the latter complexity case, if we want to double the 
accuracy of the estimation, one now only needs 2> = 4 times 
more simulations, which is a significant reduction with regard to 
the crude nested estimator performance. In addition, this result 
roughly states that antithetic type MLMC estimator can be 
reduced to an unbiased Monte Carlo estimation, as if the 
conditional expectation 𝔼[𝑌|𝑋] were known in closed form. 
Indeed, it is known that the standard Monte Carlo method 
converges in 𝑂+1/√𝑁-, hence, to reach an accuracy 𝜀 within 
the standard Monte Carlo framework, one needs roughly  
𝑁 = 𝑂(𝜀=>) scenarios. 

3. Adaptive MLMC 
Unfortunately for the problem at hand (quantile estimation), the 
payoff function 𝑔(𝑢) = 𝕀&#4	is not smooth enough to achieve 
the 𝑂(𝜀=>), and the standard MLMC estimator complexity is  

in fact 𝑂 \𝜀=
%
&	] in this case. Hence, further improvement is 

necessary to reach this optimal complexity.  

 

 

 

 

 

Giles et al. (2019)7 reduce the complexity to 𝑂(𝜀=> log(𝜀)>) 
using an adaptive strategy that uses a random allocation of 
inner scenarios across levels instead of a geometric 
progression based on the idea of Broadie et al. (2011).  
The idea works as follows:  

Let us consider a payoff function 𝑔(𝑢) = 𝕀&#4 and that we want 
to estimate the following quantity: 

𝐼 = ℙ(𝔼ℚ[𝑌|𝑋] ≥ 𝑥) = 𝔼[𝑔(𝔼ℚ[𝑌|𝑋])] 
Consider two outer scenarios 𝑋$, 𝑋> such that: 

Case 1: The true value of the conditional expectation is close 
to the loss threshold (𝔼ℚ[𝑌|𝑋$] ≈ 𝑥), hence the area where the 
indicator function is not continuous (values 0 or 1). 

Case 2: The true conditional expectation is very far from the 
singularity (𝔼ℚ[𝑌|𝑋>] ≫ 𝑥	or	𝔼ℚ[𝑌|𝑋>] ≪ 𝑥).  

The graph in Figure 2 illustrates the typical situation. 

FIGURE 2:  STOCHASTIC ALLOCATION OF INNER SCENARIOS 

 

 
 
In Case 2, a uniform strategy (𝐽, 𝐾) is clearly not optimal, as in 
that case we can afford only a very rough estimate of 𝔼ℚ[𝑌|𝑋>] 
using only a few samples. The estimation of 𝑔+𝔼ℚ[𝑌|𝑋>]- 
would be 1 because we are very far from the threshold of the 
payoff. However, in Case 1 (𝔼ℚ[𝑌|𝑋$] ≈ 𝑥), there is a high risk 
of misclassification and many more inner scenarios must be 
allocated to get a good estimate of 𝑔+𝔼ℚ[𝑌|𝑋$]-. Thus, the idea 
is to identify these high-risk primary scenarios 𝑋1 by 
considering those maximising the probability of a change  
of sign if we just add one more scenario. The related 
optimisation problem is:	

𝑖⋆ = 𝑎𝑟𝑔𝑚𝑎𝑥<+,,…,-	ℙK𝐸F<,)&B, < 𝑥|𝐸F<,)& > 𝑥L 

From Bienaymé-Tchebetchev inequality we get:	

ℙK𝐸F<,)&B, < 𝑥|𝐸F<,)& > 𝑥L ≤
𝑉𝑎𝑟(𝑌c𝑋<)

𝐾<6c𝐸F<,)& − 𝑥c
6 

 

 
7 Giles & Haji-Ali (2019), op cit. 
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This result suggests that we should allocate more inner 
scenarios if we are close to the threshold of the payoff function 
𝑥 (i.e., d𝐸H1,+' − 𝑥d	small in the denominator), with a current low 
number of inner simulations 𝐾1 and a high variance 𝑉𝑎𝑟(𝑌|𝑋1). 

Therefore, to be sure that the estimate 𝑔+𝐸H1,+'- ≈ 𝑔+𝔼ℚg𝑌d𝑋1h- 
is accurate, i.e., that the probability to make a change of sign is 
small (less than 𝜀), we should take	𝐾 such that	

𝐾 ≥
𝜎
𝑑 𝜀

8,6 

with	𝜎 = i𝑉𝑎𝑟(𝑌|𝑋), 𝑑 = |𝔼ℚ[𝑌|𝑋] − 𝑥| and impose a cap on 
the number of maximum samples to use to keep the complexity 
under control:	

𝐾 = min h𝑂(𝜀8,),
𝜎
𝑑 𝜀

8,6	j	

Broadie et al. (2011) showed that this stochastic allocation of 
resources improved the complexity of the crude nested Monte 

Carlo estimator initially of 𝑂(𝜀=?) down to 𝑂 \𝜀=
%
&] when such 

adaptive strategy is considered.  

How can this strategy be leveraged to further improve the 
MLMC estimator? 

Firstly, observe that an alternative way to construct a stochastic 
rule for 𝐾 is motivated by the central limit theorem because the 
confidence interval for the estimator 𝐸H4,+ for a given 𝑋 = 𝑥 is of 
the form: 

𝐸F(,) ∈ k𝐸[𝑌|𝑋 = 𝑥] ± 𝐶m
𝑉𝑎𝑟(𝑌|𝑋 = 𝑥)

𝐾 n	

This leads to the following alternative rule:	

𝐾 ∼
𝜎6

𝑑6 𝐶
6 

In the context of MLMC, the idea is to introduce a parameter 
𝑟 ∈ (1,2) and set the number of inner scenarios as the middle 
ground between these two allocation rules; the final formula to 
set the number of inner scenarios at level 𝑙 is	

𝐾7 = 𝐾#47max s287 , min s1, t𝐶8,𝐾#
,
627

𝑑
𝜎u

8C

vv 

with the following interpretation: 

¡ The number of samples at each level 𝑙 must be comprised 
in [𝐾!2B , 𝐾!4B] so that at most we generate 2B times more 
inner scenarios. 

¡ The introduction of a parameter 𝑟 ∈ (1,2) that is the middle 
ground power between the two-allocation rule introduced 
before that controls the number of samples. As 𝑟 
increases, the number of inner samples decreases.  

¡ The constant 𝐶 corresponds to the confidence  
bound constant. 

4. Numerical experiments 
In this section, we illustrate the theoretical results on a simple 
example where the conditional expectation and the value at 
risk are known in closed form.  

4.1 SETTING 
We consider a market model with one asset following a  
Black-Scholes diffusion:	

𝑑𝑆3
𝑆3

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊3 

We consider a portfolio comprising a single put option of 
maturity 𝑇 with strike 𝐾. The price of the put option at time 𝑡 ≤
𝑇	is known in closed form:	

𝑃3 = 𝔼ℚU𝑒8C(D83)(𝐾 − 𝑆D)B|𝑆3V
= 𝐾𝑒8C(D83)𝒩(−𝑑8) − 𝑆3𝒩(−𝑑B)

 

with: 

𝑑± =
log � 𝑆3

𝐾𝑒8C(D83)� ±
𝜎6
2 (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

And 𝒩(. ) the cdf of the standard normal distribution. 

This example, although relatively simple, is relevant in the 
insurance setting as it represents the cost of embedded 
options: An insurer proposing a minimum guaranteed rate	𝑟C 
amounts to selling a put option with strike 𝐾 = 𝑟C. Hence the 
probability to make a large loss because of the cost of such 
embedded options is the building block of computations of 
interest in practice. 

The portfolio loss at time 𝜏 is given by: 

𝐿! = 𝑃# − 𝑃!
= 𝔼ℚU𝑃# − 𝑒8C(D8!)(𝐾 − 𝑆D)B|𝑆!V

 

The value at risk (VaR) at level 𝛼 denoted 𝑉𝑎𝑅D(𝐿)) is: 

𝑉𝑎𝑟F(𝐿!) = 𝑃# − 𝑉𝑎𝑟F(𝑃!) 

where: 

𝑉𝑎𝑟F(𝑃!) = 𝐾𝑒8C(D8!)𝒩(−𝑑8(𝑥F)) 	− 𝑥F𝒩K−𝑑B(𝑥F)L 

and 

𝑥F = 𝑆#𝑒
GC8H

'

6 I!BH√!𝒩
$%(,8F) 

We want to compare the performance of the MLMC algorithms 
(original geometric version, as well as adaptive) with the crude 
nested Monte Carlo estimator in these settings. The goal is to 
compute the following quantity: 

𝑉𝑎𝑟F(𝐿!) = 𝐹$!
8,(1 − 𝛼) 
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where 𝐹(!
=$(. )	is the inverse cdf of the one-year loss distribution 

at time 𝜏. Therefore, the VaR problem can be viewed as a root 
search problem:	

𝐹𝑖𝑛𝑑	𝑥	𝑠. 𝑡	ℙ(𝐿! ≥ 𝑥) = 𝛼 

And we are back to the problem of estimating the probability of 
a large loss in a nested framework: 

𝐼 = ℙ(𝐿! ≥ 𝑥) = 𝔼ℙ[𝑔(𝔼ℚ[𝑌|𝑋])] 

with 𝑋 = 𝑆!, 𝑌 = 𝑃# − 𝑒8C(D8!)(𝐾 − 𝑆D)B	. 

4.2 NUMERICAL RESULTS 
In our numerical experiments, we considered the initial stock 
price 𝑆! = 100, the volatility 𝜎 = 30%, the option maturity 𝑇 = 5 
years, and the risk horizon 𝜏 = 1 year. 

In our tests, we deal with two cases: 

¡ At-the-money (ATM): 𝑆! = 𝐾 = 100.  
¡ Deep-in-the-money (ITM): 𝑆! ≪ 𝐾 = 200. In this case, the 

put price is close to the forward price struck at 𝐾	because 
the payoff function is close to linear, hence we are in a 
case similar to a rare event estimate because the indicator 
payoff 1 − 𝕀𝔼[F|H]#4 ≈ 0 most of the time. 

Asymptotic complexity for the probability of a large loss 
We have drawn in the following figure the root mean squared 
error (RMSE) as a function of the computational cost.  
We generated 𝑁JK"LM = 150 replications of the algorithms to 
derive the empirical cost. 

 The computational cost is defined by the following quantities: 

¡ Nested Monte Carlo: 𝐶𝑜𝑠𝑡 = 𝐽 × 𝐾. 

¡ Multilevel geometric: 𝐶𝑜𝑠𝑡 = ∑ 𝐽B𝐾B
+"
B-$ . 

¡ Multilevel adaptive: 𝐶𝑜𝑠𝑡 = ∑ 𝐽B𝐾uB
+"
B-$ , with 𝐾uB =

$
9()*+,

∑ 𝐾BN
9()*+,
N-$  the average inner scenarios per level. 

In Figures 4 and 6, we observe roughly a behaviour in 𝜀=?  
for the nested estimator (blue dotted line). In Figure 3 and 4, 

we observe a complexity in order of 𝜀=
%
& for the MLMC 

geometric estimator (blue dotted line), which is consistent  
with the theoretical result of Giles et al. We also observe that 
the adaptive version (orange dotted line in Figures 3 and 4) 
outperforms the standard MLMC approaches because the 
slope of the line is smaller than the geometric MLMC. 
This is consistent with the theoretical asymptotic of the 
adaptive approach which is in 	𝜀=>𝑙𝑜𝑔(𝜀)>. The adaptive 
version of the MLMC algorithm is particularly well suited for 
rare event estimation (ITM case, Figure 5) because we are 
performing importance sampling by construction, which leads 
to an improvement in term of variance reduction compared  
to the geometric version. 

 

FIGURE 3:   EMPIRICAL RMSE OF THE MLMC ESTIMATORS AS A 
FUNCTION OF THE COST IN LOG-SCALE (ATM CASE) 

 

FIGURE 4:   EMPIRICAL RMSE OF THE NESTED ESTIMATOR AS A 
FUNCTION OF THE COST IN LOG-SCALE (ATM CASE) 

 

FIGURE 5:   EMPIRICAL RMSE OF THE MLMC ESTIMATORS AS A 
FUNCTION OF THE COST IN LOG-SCALE (ITM CASE) 
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FIGURE 6:  EMPIRICAL RMSE OF THE NESTED ESTIMATOR AS A 
FUNCTION OF THE COST IN LOG-SCALE (ITM CASE) 

 

Asymptotic complexity for the VaR 
We now present the asymptotic result for the quantile 
estimates. In this case, we use a numerical inversion of the 
empirical survival function 𝑥 ↦ 1 − 𝐹H9(𝑥) obtained with each 
algorithm (nested, MLMC geometric, MLMC adaptive).  
This numerical inversion introduces an additional error 
compared to the computation of the probability of a large loss 𝐼. 
The plot in Figure 7 displays the empirical survival function of 
the MLMC algorithms (Figures 7 and 8) and compared the 
estimated VaR with the exact value at risk.  

FIGURE 7:  SURVIVAL FUNCTION AND VAR ESTIMATION USING THE 
GEOMETRIC MLMC ALGORITHM 

 

 

 

 

 

 

FIGURE 8:  SURVIVAL FUNCTION AND VAR ESTIMATION USING THE 
ADAPTIVE MLMC ALGORITHM 

 

 

In Figures 9 and 10, we observe that the asymptotic complexity 
results for the VaR are globally in line with the theoretical result 
shown in the previous section. However, let us observe that the 
asymptotic complexity for the MLMC methods is slightly 
deteriorated because of the additional error due to the 
numerical inversion of the empirical cdf. In any case, the 
adaptive version of the MLMC algorithm outperforms the 
standard MLMC approach.  

FIGURE 9:  EMPIRICAL RMSE OF THE NESTED AND MLMC ESTIMATORS 
AS A FUNCTION OF THE COST IN LOG-SCALE (ATM CASE) 
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FIGURE 10:  EMPIRICAL RMSE OF THE NESTED AND MLMC ESTIMATORS 
AS A FUNCTION OF THE COST IN LOG-SCALE (ITM CASE) 

  

5. Application to Internal Models 
In this section, we illustrate the performance of the MLMC 
methods on a realistic example for insurance applications.  
We consider the case of asset and liability management (ALM) 
for a life insurance portfolio and are interested in the derivation 
of the Internal Model SCR. Here, we use the framework 
developed by Floryszczak et al. (2016)8—a description of the 
main steps of the model and the main notation can be found in 
the Appendix section. We refer to this paper for further details. 

We now present numerical results for the calculation of the 
SCR in the ALM model. We use the set of parameters shown in 
Figures 11 and 12 for the ALM model and the asset model; 
they are described in the Appendix. 

FIGURE 11:  ALM PARAMETERS 
𝒓𝑮 𝑷𝑺𝑹 𝑴 𝑯 𝑳𝟎 𝑽𝟎𝒃 𝒄𝟎 𝒓𝑺𝑳 𝜷 𝒓𝑺𝑳 𝝍 𝑻 x 

1% 80% 10Y 105 120 96 30 50 40% 5% 5% 30 75 

 

FIGURE 12:  FINANCIAL MARKET MODEL PARAMETERS 

𝑺𝟎 𝒓𝟎 𝝈𝑺 𝝈𝒓 𝜿 𝜽 𝝆 

45 3% 30% 3% 20% 5% 50% 

 

 

 

 

We focus on the calculation of the SCR (quantile formulation) 
at a one-year horizon. In Figure 13, we have drawn the RMSE 
of the nested estimator 𝑆𝐶𝑅| 9:;":%, standard MLMC estimator 
𝑆𝐶𝑅| R(RS,T:UV, and adaptive MLMC estimator 𝑆𝐶𝑅| R(RS,K%KW"1X:. 
To derive the RMSE of the different estimators, as no closed 
formula is available in this framework, we rely on a full nested 
Monte Carlo procedure based on a fixed computational budget 
Γ = 10Y sample path to approximate the true value of the SCR. 
To compute the RMSE of the different estimators we produce 
𝑁JK"LM = 50 simulations +𝑆𝐶𝑅| ,-,-$,…,9()*+,and compute the 

empirical RMSE given by: 

𝑅𝑀𝑆𝐸 = �
1

𝑁LM3NO
H K𝑆𝐶𝑅� 5 − 𝑆𝐶𝑅L

6
0()*+,

5+,

	 

We plot the empirical RMSE’s of the different estimators as a 
function of the computational cost in log-scale. 

FIGURE 13:  EMPIRICAL RMSE OF THE NESTED ESTIMATOR AS A 
FUNCTION OF THE COST IN LOG-SCALE 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

8 Floryszczak, Anthony, Olivier Le Courtois, and Mohamed Majri (2016). Inside 
the Solvency 2 black box: Net asset values and solvency capital requirements 
with a least-squares Monte-Carlo approach. Insurance: Mathematics and 
Economics 71: 15-26. 
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FIGURE 14:   EMPIRICAL RMSE OF THE MLMC ESTIMATORS AS A 
FUNCTION OF THE COST IN LOG-SCALE 

 

In Figure 13, we observe that the behaviour of the nested 
estimator is roughly in 𝑂(𝜀=?) while MLMC methods are 

approximately in order 𝑂 \𝜀=
%
&], which is in line with the results 

of Giles et al. In this case, adaptive MLMC slightly outperforms 
the standard MLMC estimator but does not attain the optimal 
complexity 𝑂(𝜀=>). Nevertheless, it represents a significant 
improvement compared to a crude nested estimator. 

Conclusion 
In this paper, we have shown that MLMC methods are a 
relevant alternative to the proxy modelling approaches that are 
commonly used in capital requirement estimation within the 
insurance sector. This approach represents a paradigm shift in 
that it smartly allocates computational resources to correct the 
inner bias of the nested procedure instead of relying on a 
proxy. From the operational point of view, this method eases 
the overall validation process of the insurance company.  
In proxy modelling, explanatory variables must be carefully 
selected and the proxy function must be properly calibrated 
and validated. With MLMC methods, this complex process is 
bypassed because no proxy is involved in the estimation 
process. To our knowledge, this is the first time an adaptive 
MLMC algorithm has been implemented for insurance 
applications. This adaptive version of the algorithm outperforms 
the standard MLMC estimator and can be efficiently 
parallelised and implemented on graphic cards to obtain a 
significant performance boost. With the recent development of 
cloud computing and improved computational capabilities 
within the insurance industry, MLMC methods might be one 
high-potential solution to unlock the nested simulation problem 
and estimate the SCR efficiently. 

 

Appendix 
In this appendix section, we describe the main steps of the 
ALM framework developed in by Floryszczak et al. (2016).9 

Savings contract characteristics 
We consider an insurance company that handles savings contracts. 
The policyholder makes a deposit (their savings) and the insurance 
company guarantees a minimal earning (minimal guaranteed rate 
𝑟C) each year. This amount is then invested in the financial market 
and the policyholder is granted an additional bonus called Profit-
Sharing, corresponding to a proportion 𝑃𝑆𝑅 ∈ [0,1] of the gain of 
the financial portfolio. The contract terminates upon death or 
surrender of the policyholder. 

The initial deposit of the policyholder is invested in stocks, 
sovereign bonds and cash (i.e., deposited in a bank account). 
A part of the capital is invested in coupon-bearing bonds of 
maturity 𝑀 with nominal 𝐻 delivering each year coupon 
payment 𝑐J with market-value: 

𝑉3 =H𝑐L𝐻	𝑃(𝑡, 𝑡 + 𝑖) + 𝐻	𝑃(𝑡, 𝑡 + 𝑀)
9

<+,

 

The initial value of the portfolio is given by: 

𝐴# = 𝑉# + 𝑆# + 𝐶# 

where 𝑆! is the stock price at time 0 and 𝐶! the initial cash level. 

Surrender outflow and cash dynamics 
Outflows occur upon death or lapsation of the policyholder. Let 
𝑞45"=$ be the probability that a policyholder with age 𝑥 + 𝑡 − 1 
at time 𝑡 die next year. Let 𝑟((Δ) be the lapse probability 
between two dates. The cash outflow is given by: 

𝐹3 = 𝐿38,K𝑞(B38, +𝜓𝑟$(Δ)L 

where (𝐿")"#! is the liability book-value (initial deposit and 
accrued credited rate) and 𝜓 a penalty in case of surrender. 

The lapse rate is modelled as a parabolic function: 

𝑟$(Δ) = 𝑟P$ + 𝕀QR#min{𝛼Δ6, 𝛽} 

where Δ = 𝑟 − 𝑟S is the difference between the market rate 
𝑟	and the crediting rate 𝑟S. The parameter 𝑟Z( quantifies 
structural surrenders, 𝛼 is the speed rate at which a 
policyholder lapses their contract if the rate proposed by the 
insurance company is too low compared to the market rate and 
𝛽 is a maximal (cap) surrender rate. 

 
 
 
 
 
 
 
 9 Ibid. 
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Cash dynamics 
The cash account is a deposit on a bank account that yields 
interest rate 𝑟". The coupons from investment are deposited on 
this account and outflows are paid with cash in priority: 

𝑐3 = 𝑐38,𝑒∫ C-42
*
*$% +𝐻𝑐L − 𝐹3 

If there is not enough cash, bonds and stocks are sold on the 
market to provide the necessary liquidity. 

Asset management 
When bonds mature, all cash except a security amount is 
invested in new bonds of the same maturity. At time 𝑀, the 
market value of the bond satisfies: 

𝑉9L = (𝑐9 − 𝑐#) =H𝑐L𝐻⋆	𝑃(𝑡, 𝑡 + 𝑖) + 𝐻⋆	𝑃(𝑡, 𝑡 + 𝑀)
9

<+,

 

where 𝑐! is the security amount and 𝐻⋆ the nominal value that 
solves this equation. 

The asset return between [𝑡 − 1, 𝑡) is measured by the log-
variation of the price: 

𝑅3M = 𝑙𝑜𝑔 �
𝐴3
𝐴38,

�

= log �
𝑉3L + 𝑆3 + 𝑐38,𝑒∫ C-42

*
*$% +𝐻𝑐L

𝑉38,L + 𝑆38, + 𝑐38,
�

 

Liability dynamics 
We distinguish two types of liability to compute the debt  
toward the policyholder: 

¡ Market value of liability: The maximum between the 
guaranteed amount and the profit-sharing, taking into 
account the cash outflows: 

ℒ3 = ℒ38 − 𝐹3 

where : 

ℒ38 = 	𝑚𝑎𝑥{ℒ38,(1 + 𝑃𝑆𝑅 × 𝑅3M), 𝐿38,𝑒C. 	} 

¡ Liability book value: This quantity corresponds to 
policyholders’ savings updated with the crediting-rate 
𝑟S(𝑡): 

𝐿3 = 𝐿38,K1 + 𝑟:(𝑡)L 

where the crediting rate takes the following form: 

𝑟S(𝑡) = 𝑒[-�
V1\1V&V	T&K[K\"::%	[K":

+ 𝑃𝑆𝑅 �
ℒ"=
𝐿"=$

− 𝑒[- − 1�
5���������������

K%%1"1U\\KB	W[U]1"	;MK[1\T

− 1 

 
 
 
 
 
 

Solvency II balance sheet 
The balance sheet of the insurance company is divided  
into two groups: 

¡ Asset: The market-value 𝐴" of the asset. 
¡ Liability: The liability side is decomposed into two groups. 

Firstly the so-called Best-Estimates of Liabilities (BEL) 
corresponds to the discounted value of future cash 
outflows. This is the estimated debt of the company that 
sells the insurance contract: 

𝐵𝐸𝐿3 = 𝔼ℚ �H𝑒8∫ C-42
/
* 𝐹&|ℱ3	

D

&+3

� 

where 𝑇 is the maturity of the insurance contract. The Own 
Fund of the company (also called Net-Asset-Values or NAV) is 
the amount that remains when the company has paid its debt. 
A negative NAV is a situation of insolvency: 

𝑁𝐴𝑉3 = 𝐴3 − 𝐵𝐸𝐿3 

The Solvency Capital Requirement (SCR) is the minimum 
amount 𝑥⋆ that must be added to the current Own Fund  
to avoid insolvency in the next year with a high confidence 
level 1 − 𝛼: 

𝑆𝐶𝑅"5$ = inf �𝑥 ∈ ℝ,ℙ \𝑁𝐴𝑉"5$ + 𝑥𝑒∫ [.%;
*/$
*

≥ 0|ℱ"] ≥ 1 − 𝛼� 

Financial market model 
The fund managers invest policyholder deposits in stocks, cash 
and bonds; therefore we need stochastic models to generate 
the stock index and the level of interest rate. For the purpose of 
illustration, we consider Black-Scholes-Vasicek dynamics: 

𝑑𝑆3
𝑆3

= 𝑟3𝑑𝑡 + 𝜎P𝑑𝑊3
P

𝑑𝑟3 = 𝜅(𝜃 − 𝑟3)𝑑𝑡 + 𝜎C �𝜌𝑑𝑊3
P +�1 − 𝜌6𝑑𝑊3

C�
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